metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊C4⋊5S3, (C2×Dic6)⋊4C4, (C2×D4).119D6, C23.10(C4×S3), C22⋊C4.43D6, (C6×D4).7C22, C22.23(S3×D4), (C22×Dic3)⋊4C4, C23.6D6⋊3C2, C23.7D6⋊3C2, (C22×C6).1C23, (C2×Dic3).132D4, C23.11(C22×S3), C23.16D6⋊23C2, Dic3.3(C22⋊C4), C3⋊1(C23.C23), C6.D4.1C22, (C22×Dic3).25C22, (S3×C2×C4)⋊1C4, (C2×C3⋊D4)⋊1C4, (C2×C4).5(C4×S3), (C3×C23⋊C4)⋊3C2, (C2×C12).5(C2×C4), (C2×C6).16(C2×D4), C22.12(S3×C2×C4), C2.11(S3×C22⋊C4), C6.10(C2×C22⋊C4), (C22×C6).5(C2×C4), (C2×C6).6(C22×C4), (C2×D4⋊2S3).1C2, (C22×S3).1(C2×C4), (C2×Dic3).1(C2×C4), (C2×C3⋊D4).1C22, (C3×C22⋊C4).82C22, SmallGroup(192,299)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C23 — C23⋊C4 |
Generators and relations for C23⋊C4⋊5S3
G = < a,b,c,d,e,f | a2=b2=c2=d4=e3=f2=1, ab=ba, faf=ac=ca, dad-1=abc, ae=ea, dbd-1=bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=bcd, fef=e-1 >
Subgroups: 448 in 158 conjugacy classes, 51 normal (31 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C23⋊C4, C23⋊C4, C42⋊C2, C2×C4○D4, C4×Dic3, Dic3⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, S3×C2×C4, D4⋊2S3, C22×Dic3, C2×C3⋊D4, C6×D4, C23.C23, C23.6D6, C23.7D6, C3×C23⋊C4, C23.16D6, C2×D4⋊2S3, C23⋊C4⋊5S3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, C22×S3, C2×C22⋊C4, S3×C2×C4, S3×D4, C23.C23, S3×C22⋊C4, C23⋊C4⋊5S3
(1 16)(2 15)(3 37)(4 40)(5 22)(6 21)(7 44)(8 43)(9 46)(10 45)(11 18)(12 17)(13 26)(14 25)(19 33)(20 36)(23 32)(24 31)(27 39)(28 38)(29 42)(30 41)(34 48)(35 47)
(1 3)(2 26)(4 28)(5 7)(6 32)(8 30)(9 11)(10 35)(12 33)(13 15)(14 39)(16 37)(17 19)(18 46)(20 48)(21 23)(22 44)(24 42)(25 27)(29 31)(34 36)(38 40)(41 43)(45 47)
(1 27)(2 28)(3 25)(4 26)(5 29)(6 30)(7 31)(8 32)(9 36)(10 33)(11 34)(12 35)(13 40)(14 37)(15 38)(16 39)(17 47)(18 48)(19 45)(20 46)(21 41)(22 42)(23 43)(24 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 43 9)(2 44 10)(3 41 11)(4 42 12)(5 47 13)(6 48 14)(7 45 15)(8 46 16)(17 40 29)(18 37 30)(19 38 31)(20 39 32)(21 34 25)(22 35 26)(23 36 27)(24 33 28)
(1 2)(3 26)(4 25)(5 48)(6 47)(7 20)(8 19)(9 44)(10 43)(11 22)(12 21)(13 14)(15 39)(16 38)(17 30)(18 29)(23 33)(24 36)(27 28)(31 46)(32 45)(34 42)(35 41)(37 40)
G:=sub<Sym(48)| (1,16)(2,15)(3,37)(4,40)(5,22)(6,21)(7,44)(8,43)(9,46)(10,45)(11,18)(12,17)(13,26)(14,25)(19,33)(20,36)(23,32)(24,31)(27,39)(28,38)(29,42)(30,41)(34,48)(35,47), (1,3)(2,26)(4,28)(5,7)(6,32)(8,30)(9,11)(10,35)(12,33)(13,15)(14,39)(16,37)(17,19)(18,46)(20,48)(21,23)(22,44)(24,42)(25,27)(29,31)(34,36)(38,40)(41,43)(45,47), (1,27)(2,28)(3,25)(4,26)(5,29)(6,30)(7,31)(8,32)(9,36)(10,33)(11,34)(12,35)(13,40)(14,37)(15,38)(16,39)(17,47)(18,48)(19,45)(20,46)(21,41)(22,42)(23,43)(24,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,43,9)(2,44,10)(3,41,11)(4,42,12)(5,47,13)(6,48,14)(7,45,15)(8,46,16)(17,40,29)(18,37,30)(19,38,31)(20,39,32)(21,34,25)(22,35,26)(23,36,27)(24,33,28), (1,2)(3,26)(4,25)(5,48)(6,47)(7,20)(8,19)(9,44)(10,43)(11,22)(12,21)(13,14)(15,39)(16,38)(17,30)(18,29)(23,33)(24,36)(27,28)(31,46)(32,45)(34,42)(35,41)(37,40)>;
G:=Group( (1,16)(2,15)(3,37)(4,40)(5,22)(6,21)(7,44)(8,43)(9,46)(10,45)(11,18)(12,17)(13,26)(14,25)(19,33)(20,36)(23,32)(24,31)(27,39)(28,38)(29,42)(30,41)(34,48)(35,47), (1,3)(2,26)(4,28)(5,7)(6,32)(8,30)(9,11)(10,35)(12,33)(13,15)(14,39)(16,37)(17,19)(18,46)(20,48)(21,23)(22,44)(24,42)(25,27)(29,31)(34,36)(38,40)(41,43)(45,47), (1,27)(2,28)(3,25)(4,26)(5,29)(6,30)(7,31)(8,32)(9,36)(10,33)(11,34)(12,35)(13,40)(14,37)(15,38)(16,39)(17,47)(18,48)(19,45)(20,46)(21,41)(22,42)(23,43)(24,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,43,9)(2,44,10)(3,41,11)(4,42,12)(5,47,13)(6,48,14)(7,45,15)(8,46,16)(17,40,29)(18,37,30)(19,38,31)(20,39,32)(21,34,25)(22,35,26)(23,36,27)(24,33,28), (1,2)(3,26)(4,25)(5,48)(6,47)(7,20)(8,19)(9,44)(10,43)(11,22)(12,21)(13,14)(15,39)(16,38)(17,30)(18,29)(23,33)(24,36)(27,28)(31,46)(32,45)(34,42)(35,41)(37,40) );
G=PermutationGroup([[(1,16),(2,15),(3,37),(4,40),(5,22),(6,21),(7,44),(8,43),(9,46),(10,45),(11,18),(12,17),(13,26),(14,25),(19,33),(20,36),(23,32),(24,31),(27,39),(28,38),(29,42),(30,41),(34,48),(35,47)], [(1,3),(2,26),(4,28),(5,7),(6,32),(8,30),(9,11),(10,35),(12,33),(13,15),(14,39),(16,37),(17,19),(18,46),(20,48),(21,23),(22,44),(24,42),(25,27),(29,31),(34,36),(38,40),(41,43),(45,47)], [(1,27),(2,28),(3,25),(4,26),(5,29),(6,30),(7,31),(8,32),(9,36),(10,33),(11,34),(12,35),(13,40),(14,37),(15,38),(16,39),(17,47),(18,48),(19,45),(20,46),(21,41),(22,42),(23,43),(24,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,43,9),(2,44,10),(3,41,11),(4,42,12),(5,47,13),(6,48,14),(7,45,15),(8,46,16),(17,40,29),(18,37,30),(19,38,31),(20,39,32),(21,34,25),(22,35,26),(23,36,27),(24,33,28)], [(1,2),(3,26),(4,25),(5,48),(6,47),(7,20),(8,19),(9,44),(10,43),(11,22),(12,21),(13,14),(15,39),(16,38),(17,30),(18,29),(23,33),(24,36),(27,28),(31,46),(32,45),(34,42),(35,41),(37,40)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 4J | 4K | ··· | 4O | 6A | 6B | 6C | 6D | 6E | 12A | ··· | 12E |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 12 | 2 | 3 | 3 | 4 | ··· | 4 | 6 | 6 | 6 | 12 | ··· | 12 | 2 | 4 | 4 | 4 | 8 | 8 | ··· | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | S3 | D4 | D6 | D6 | C4×S3 | C4×S3 | S3×D4 | C23.C23 | C23⋊C4⋊5S3 |
kernel | C23⋊C4⋊5S3 | C23.6D6 | C23.7D6 | C3×C23⋊C4 | C23.16D6 | C2×D4⋊2S3 | C2×Dic6 | S3×C2×C4 | C22×Dic3 | C2×C3⋊D4 | C23⋊C4 | C2×Dic3 | C22⋊C4 | C2×D4 | C2×C4 | C23 | C22 | C3 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 4 | 2 | 1 | 2 | 2 | 2 | 2 | 1 |
Matrix representation of C23⋊C4⋊5S3 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 5 | 0 |
0 | 0 | 0 | 8 | 0 | 5 |
0 | 0 | 8 | 8 | 0 | 5 |
0 | 0 | 0 | 3 | 0 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 12 |
0 | 0 | 1 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 1 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 12 | 1 |
0 | 0 | 12 | 12 | 0 | 1 |
0 | 0 | 11 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,8,0,0,0,8,8,8,3,0,0,5,0,0,0,0,0,0,5,5,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,1,2,0,0,12,12,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,12,12,11,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,12,12,11,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,1,1,1] >;
C23⋊C4⋊5S3 in GAP, Magma, Sage, TeX
C_2^3\rtimes C_4\rtimes_5S_3
% in TeX
G:=Group("C2^3:C4:5S3");
// GroupNames label
G:=SmallGroup(192,299);
// by ID
G=gap.SmallGroup(192,299);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,219,58,570,438,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^4=e^3=f^2=1,a*b=b*a,f*a*f=a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=b*c*d,f*e*f=e^-1>;
// generators/relations